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Abstract. We study a spin-1 Blume-Emery-Griffiths model on the triangular lattice using 
a generalisation of Niemeijer and van Leeuwen’s discrete spin renormalisation group 
transformation which preserves the Potts symmetry of this model. 

We obtain an overall phase diagram that is basically in agreement with other treat- 
ments of this model. Our exponents are compared with other renormalisation group 
studies and some series results. 

1. Introduction 

Crossover phenomena near tricritical points have been studied extensively from 
several points of view in the last few years. These include general scaling arguments 
(Griffiths 1970, 1973, Riedel 1972, Hankey et a1 1972), series extrapolation tech- 
niques (Harbus and Stanley 1973, Saul et a1 1974), Monte Carlo calculations (Arora 
and Landau 1973), mean field theories (Blume et a1 1971) and, more recently, 
renormalisation group studies at three dimensions (Riedel and Wegner 1972, 1973), 
at d = 3 - E  dimensions (Stephen and McCauley 1973, Chang et a1 1974), at two 
dimensions (Nienhuis and Nauenberg 1976) and at one dimension (Krinsky and 
Furman 1975). 

There have been two distinct discrete spin models which yield tricritical points. 
One of these is the spin-; metamagnet, which is an antiferromagnet which becomes 
tricritical in a sufficiently large magnetic field, and the second is the spin-1 Blume- 
Emery-Griffiths (BEG) model, constructed mainly to study 3He-4He mixtures (Blume 
et a1 1971). In the continuous spin limit, both models reduce to the standard 
Ginzburg-Landau-Wilson Hamiltonian (Riedel and Wegner 1972, Nelson and Fisher 
1975, Fisher and Nelson 1975). This Hamiltonian can be treated exactly at d = 3, to 
yield a Gaussian tricritical point exhibiting mean-field-like exponents modified by 
logarithmic corrections (Riedel and Wegner 1972, 1973). Studies of the same model 
at d = 3 - E  yield E expansions of the critical exponents, which make it possible to try 
and continue the results to d < 3 (Stephen and McCauley 1973, Chang et a1 1974). 

The metamagnet was recently studied at d = 2 by Nienhuis and Nauenberg (1976), 
using discrete spin renormalisation group transformation (Niemeijer and van 
Leeuwen 1974). They studied the competition between tricritical and critical ordering 
arising from the crossover between the appropriate two fixed points. In addition they 
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emphasised the role of an additional fixed point, describing the first-order transition 
beyond the tricritical point. Among other things, they obtained estimates for the 
tricritical exponents, which are rather distinct from those of mean field theory. 

A priori, there seems to be little relation between the metamagnet and the BEG 
models at d = 2. In this paper, we intend to study the BEG model at d = 2, using a 
discrete spin renormalisation group (Niemeijer and van Leeuwen 1974), and to 
compare the results with those of the metamagnet. An interesting question we hope 
to be able to study involves the universality of tricritical points at d = 2. 

The BEG model (Blume e? a1 1971) is a spin-1 lattice model, defined by the 
Hamiltonian 

-px= 1 [KSiS j+LSfS:+M(S~+S: ) ] .  
( i i )  

The sum is over nearest neighbour pairs, and Si = 1 , 0  or -1. The relation of the 
coefficients K, L and M to the physical parameters of 3He-4He mixtures is discussed 
at length by Blume et a1 (1971). The same Hamiltonian may describe the behaviour 
of competing dipolar and quadrupolar orderings in magnets (Chen and Levy 1973), or 
that of a spin-4 Ising model with annealed non-magnetic impurities (Wortis 1974). 

Several special limits should be noted. For M + 00 (or for L + CO) the S = 0 state is 
suppressed, and the model reduces to the spin-4 Ising model. For K = 0, one can 
define a variable ui = 2Sf - 1 = + l ,  in terms of which the Hamiltonian again reduces to 
a spin-$ Ising model, with an exchange L/4 and a temperature dependent magnetic 
field [z(M+L/2)+ln 2 ] / 2 ,  where z is the coordination number (Griffiths 1967). This 
limit probably corresponds to quadrupolar ordering (Chen and Levy 1973). For 
K = fL = -$M, the model reduces to the Potts (1952) model, -@H = 2K Eoij) (SSis, - 1) 
(Joseph and Kim 1974). Any renormalisation group study should lead to fixed points 
which describe these limiting cases. In addition, we expect of course to find a 
tricritical fixed point and fixed points at T = 0 and T = 00. 

An interesting question involves the universality of Ising critical behaviour, i.e. do 
the spin-1 and the spin-4 models lead to the same exponents (e.g. Van Dyke and 
Camp 1975)? In recent work, Berker (1975) studied the spin-S model at d = 2 by first 
projecting it on the spin-4 one and then following Niemeijer and van Leeuwen (1974). 
This, of course, does not answer the question of universality. As we shall see, we find 
that the renormalisation group flow of the Hamiltonian (l), in the critical regime, 
indeed goes to the Ising S = 4 fixed point, thus proving universality within the present 
calculation. 

There are several possible generalisations of the Niemeijer-van Leeuwen (1974) 
approach to spin-1 Hamiltonians. We shall discuss some of these, within the two-cell 
cluster approximation, in the next section. The resulting fixed points and Hamiltonian 
flows will be described in 0 3 and the results will be summarised and discussed in 8 4. 

After we finished the calculations described in this paper, we received a paper by 
Berker and Wortis (1976), in which they discuss the BEG model on a square lattice, 
using a Niemeijer-van Leeuwen (1974) technique. The global phase diagrams, and 
the Hamiltonian flows which they find are very similar to the ones we find. However, 
there are several differences in the renormalisation group transformation and in the 
numerical results (not to mention the different lattice structure; we work on a tri- 
angular lattice). We thus decided to emphasise here the differences with the 
independent Berker-Wortis work, and to refer to their work for the more general 
picture, which is similar. We will also compare our work with several calculations 
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which provide partial results for the BEG model. These include the work of Burkhardt 
(1976) who has applied Kadanoff’s variational method (Kadanoff et a1 1976) to the 
Blume-Cape1 model and Burkhardt et a1 (1976) and Dasgupta (1976) who have 
studied the 3-state Potts model. 

2. Renormalisation group transformation 

Following Niemeijer and van Leeuwen (1974) we consider a triangular lattice (figure 
1)’ with a spin S9, equal to *1 or 0 at each site. We now group the spins into 
triangular cells, so that the three spins St, S:, S? are grouped into the cell i, with cell 
spin 

pi = /.Li(St, ST, s:). (2) 
The cell spins pi are chosen so as to have again the values *1 or 0. 

Figure 1. Three cells on the triangular lattice. 

The cell spin Hamiltonian H ’ { p i }  is found through (Niemeijer and van Leeuwen 
1974) 

where the sum Z’ is over all the spin configurations which are consistent with a given 
cell spin configuration {pi}. 

The transformation (3) cannot be calculated exactly, and there are various possible 
approximations to perform it. Being interested in nearest neighbour effects, we follow 
Niemeijer and van Leeuwen in choosing the simplest two-cell cluster approximation. 

For the cluster ij in figure 1, the new two-cell interaction, h’(pi ,  pi), is given by 

exp(h’(pi, pi))= zo(pi)zo(piXexp(h(sT, sf>+ h(s : ,  s;) ) )  (4) 
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the sum being only over configurations of the three spins in cell i consistent with the 
given pi, and the average (A) is with the Boltzmann factors of equation ( 5 )  and with 
similarly restricted sums. 

The main new feature of the transformation, beyond the S =$ calculation of 
Niemeijer and van Leeuwen, is the definition of the cell spin, equation (2). It has 
recently been emphasised by van Leeuwen (1975) that this transformation should 
preserve all the important symmetries of the problem. The same spirit was adopted by 
Berker and Wortis (1976), who chose to preserve the symmetries of the Ising model 
limit M + a0 and of the Griffiths-Ising limit K + 0. We choose to emphasise the Potts 
model symmetry, i.e. the invariance of the Hamiltonian under permutations of the 
three possible values of the spin variable (*l or 0) when K =+L = -4M. To preserve 
this symmetry, we follow Harris et a1 (1975) in using the majority rule: pi(S:, S:, S : )  
is equal to S7 if any two spins are equal to S7. If all three spins are different from each 
other, then we have two possible procedures: 

(Al l  
or 

(A2) 

p i ( S f r  S: ,  S ? )  = S f , ,  independent of S: and S:,  

assign one third of the contributions that these configurations make to 
the sums in equation (3) to each possible value of pi. 

There are many other possible transformations. For example, the simple assign- 
ment used by Niemeijer and van Leeuwen (1974), namely 

p i ( s f ,  ST, s:)= sgn(Sf +S:+S?),  

where sgn(0) = 0, does not give equal weights to the states pi = f 1 or 0. This leads to 
an unreasonable fixed point structure. 

Using the assignments (Al )  or (A2), we are now ready to calculate the new pair 
interaction h’(pi ,  pi). The identity 

exp[KSiSi + LSTS: + M ( s ~  +s:)] = 1 + CISiSi + C&S: + C& + $1 (6 1 

where 

C1 = exp(2M + L )  sinh(K) 

C2 = 1 - 2 exp(M) + exp(2M + L )  cosh(K) 

C3 = exp(M) - 1 

is used, to yield 

(7 ) 2 2  2 exp[h’(pi, ~~j)l=xO+xl~~i~i+~2~ ip j+X3p:+X4p j ,  

where the various coefficients are listed in table 1.  The calculation involves averages 
like ( (S7)k(S?) ’ ) ,  which are listed in table 2. 

One should note the asymmetry between the coefficients of p ;  and p: in equation 
(7) .  In order to eliminate this asymmetry we follow Harris et a1 (1975), and average 
over all possible triangle pairs. 

Our new cell spin Hamiltonian is H’(K’, L’, M ’ )  and we find the new parameters 
K’, L’, M’ by transforming the right-hand side of ( 7 )  back to exponential form. The 
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Table 1. Coefficients for scheme A l ,  (for A2 replace C1 and C2 by C etc P1 and P2 by P3.) 

X = exp(2M + L )  sinh(K) 

V = 1 - 2 exp(M) + exp(2M + L) cosh(K) 

Y = exp(M)- 1 

Xo = B2 - X z  W2E1+ 2 VE1E2+2 VYEI( W2 +E2)+2 YB(El+E2)+ V z  W2E1 
+ Y2[B(E1+ W2)+2ElE2] 

Xi =2XC1Cz+2XVCiF+2XYCI(F+Cz) 
X 2 = ( A - B ) 2 + X 2 ( P 2 +  W ~ ) ( D ~ - E ~ ) + ~ V ( D ~ - E ~ ) ( D ~ - E Z )  

+ 2  VY(H2- Wz+Dz- E2)(Dl -E1)+2 Y ( A  -B)(D1 -El +&-E,) 
+ Vz(H2-  W-JDl - E l ) +  Y2[(A - B)(H;! - W2 +D1 -E1)+2(D1 -El)(& -&)I 

X3 = (A  -B)B +X2E1(P2+ W2)+2VE,(Dz-E2)+2 VYEl(H2 - W2 +D,-E,) 
+ 2 Y [ ( D z - E 2 ) B + ( A - B ) E J +  V2E1(H2- W2) 
+ Y2[(Hz - W2)B + 2(D2 -E2)E1 + ( A  - B)E1] 

X4= (A-B)B-XZ(D1-El)Wz+2V(D1-E1)E2+2VY(D2-E2)W2+E2 
+ 2 Y [ ( A  -B)Ez + (Dl -E@] + V2(D1-E1) W2 
+ Y 2 [ ( A  -B)W2+2(D1 -El)& + (Dl -E1)B] 

Yo = x, 
Y1= x, +XI + x2 + x3 + x, 
Y2 = x, - x1 +x2 + x3 + x, 
Y3 = x, + x3 
Y4 = x, + x, 

values are 

eK' = ( yl/ Y ~ ) ~ ' ~  eL'= [ Y ~ Y ~ Y ~ / ( Y ~ ) ~ ( Y ~ ) ~ ] ~ ' ~  eM' = ( YJ YO)" ( y4/ yo)b 

(8) 
where U = $, b = $. The Y coefficients are given in table 1. 

figure 1, then average to obtain 
For scheme (Al)  we must also calculate the recursion relations for the cluster ik of 

The Hamiltonian of equation (1) (denoted H1) may also be written in the more 
usual form ( H 2 ) ,  where the interaction S: is associated with sites rather than bonds 

where N = zM, z being the coordination number. 
For the two-cell cluster approximation, the effective coordination number zeff, is 

somewhat less than z = 6 for the triangular lattice. This means that the values of a 
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Table 2. Averages. 

Scheme A1 Scheme A2 

A=P+3Q+3R+2U 
B = 1 +2U +6S ZO = (1) = ( A  -B)fi:  + B  

(si)= Clfii 
( S f )  = c2fii 

( ( S ~ ) ~ ) = ( D , - E ~ ) ~ L : + E ~  E1 = 2s 

((Sf)')= ( 0 2 -  EZ)LL: + E2 

C I =  P+ Q + 2R +2u ) c = p +  Q + 2R 
C2 = P + Q + 2 R - U p = 2,3 

D1=P+3Q+2R +2u D =p+3Q+2E+$U 

D2=P+3Q+2R + U  E = 2 s + j  

p 3 = R  P - Q -  -$U 

1 
1 w=$u 

E2 = 2S+2U 

Pi = P -  Q + R - U 
w,=o 
P2 = P - Q + R 
w2=2u 

(s :s f )  = (Pl+ w1)CL:- w1 

(s:S:)=(Pz+ W2)fij- w 

((s:)2(sc)2) = ( I f 1  - WdP: + w1 H 1 = P + 3 Q + R  + H =P+3Q+R + $ U  ((Sf)2(s:)2)=(H2- W2)fif+ W2 H2=P+3Q+R 

( S : ( S f ) 2 + S f ( S f ) 2 ) =  2F F = P + Q + R  
(Sf(S:)'+ Si (S : )2 )  = 2F 

P = exp(3(K + L + 2M) from configurations where Sf = Sl = Sf # 0 

Q = exp(-K +3L + 6 M )  from configurations where ST = Sl = -Sf # 0 

R = exp(K + L + 4M) from configurations where ST = S: # Sf = 0 

S = exp(2M) from configurations where 0 = ST = Sl # Sf 
U = exp(-K + L  +4M) from configurations where ST # Sy # Sf 

and b given in equation (8) are no longer justified, and we have 

a + b = z/zeff. 

We expect the Potts fixed point for this Hamiltonian to occur at 

K =fL=-N/2~ , f i .  

For the Griffiths Ising spin-; behaviour we expect K* = 0, 

L* = 4Ky and N* = -2zgfiK: -In 2 

for H2 (for H1 we expect the last to be replaced by M* = -2KT-ln 2), where KT 
denotes the fixed point value of K for the usual spin-$ Ising model (L = M = 0). We 
have also carried out a one-parameter calculation directly on the three-state Potts 
Hamiltonian (H3) which is H1 with K = fL = -$M. 

In this case the sums in equations (4) and ( 5 )  must be taken over fixed values of 
both pi and pi. We use the relationship 

and require the averages (Ssysf), ( ( S s y s ~ ) ( S s ~ s , ) >  etc (see table 3). 
The recursion relations are identical to those for H1 with the Potts coefficients. 
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Table 3. S function averages (scheme Al). 

A =e6' 18 e4" + 2  e3r + 10 e* 
B = 2e4" +e3" + 9 ez1 + 7 e* +2  

C = e6r + 6  e4" + 2  e3" +8 ezK + 2  e" 
D = e4" + 2  eZK 

F =  e6r +8 e4" + 18 ezx + 4  e" + 2  
G = 2  e4" + 2  e3" + 9  eZr + 10 e" + 1 

H = e6" + 6  e4" +8 e2' 
z = e4r +e3* +2  e'* + 2  e" 

3. Fived points and their exponents 

The global scheme for our two different Hamiltonians and two different averaging 
schemes is very similar. It is also similar to that obtained by Berker and Wortis 
(1976). It thus would appear that these overall features are independent of both the 
lattice structure and the exact nature of the transformation, the former to be expected 
from universality and the latter to be hoped for. We cannot compare locations of our 
fixed points with those of Berker and Wortis (1976) and Burkhardt (1976) since their 
work was for the square lattice but we will compare eigenvalues and the proximity of 
the Potts fixed point to its axis. The locations of the higher order fixed points and their 
exponents can be found in tables 4 and 5 ,  and we now consider some regions that are 
of special interest. 

Table 4. Critical points and exponents for H1 and H3. 

Ising (0.365, -, 00) (0.79, -, -) 
Griffiths (0, 1.69, -1.01) (3.4,0.9, -1.3) 
Tricritical (0.88,2,0*29, -0.519) (3.1,0.6, -0.7) 
Potts (0.447,3K, -2K) (3.3, 1.0,O.S) 
One-parame ter 
Potts (H3) (0*447,3K, -2K) (-, 1.0, -) 

Table 5. Critical points and exponents for H2 (a + b = 1.6). 

Ising (0.365, -, 00) (0.79, -, -) 
Griffiths (0,2.09, -3.76) (2.1,1.0, -1.1) 
Tricritical (0.954,0.017, -1.34) (2.0,0.4, -1.1) 
Potts (0.376, 1.80, -3.47) (2.1, 1.0,0.6) 
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0 

3.1. The L = 0 plane 

This plane is equivalent to the Blume-Cape1 model (Blume 1966, Capel 1966, 
1967a,b). The critical line in this plane is shown in figure 2. The general shape of the 
line is similar to the mean field result and that obtained by Berker and Wortis (1976). 
In figure 3 we present this plane again and note that all the points (with spin-1 
Hamiltonians) along the segment TS flow to the spin-; fixed point K*=0.365,  
M * = m .  This value of K* is the same coupling constant as Niemeijer and van 
Leeuwen found for their two-cell cluster approximation and in fact our recursion 
relations reduce exactly to theirs in the limit M + a. This proves, within our renor- 
malisation group, the universal equivalence of the spin-1 and the spin-; Ising models. 

I 

I 
I 

1 , 1 

2.0- 

1.0 

Figure 2. The Blume-Capel phase diagram (L = 0). The full and broken curves cor- 
respond to second and first order transitions. T is the initial point from which flows go to 
the tricritical fixed point. 

A 
- 

B 

Figure 3. The Blume-Cape1 phase diagram. The points (with spin-1 Hamiltonians) along 
TS flow to the S = 5 Ising fixed point S. From T we flow to the tricritical point. The points 
in region A flow to (0, 0, CO), those in C to (0, 0, -a) and those in B to (a, -m, CO). The 
points along TF flow to (03, CO, -00). 
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The points below T on TF  flow to an infinite fixed point at (CO, CO, -CO) and from T 
we flow to the tricritical point. In this plane we also find trivial fixed points at 

(0 ,0,  01, (O,O, CO) and (O ,O,  -00). 

These correspond to the three trivial points of Berker and Wortis (1976). The points 
in region A (see figure 3) flow to (0, 0, CO) those in C to (0, 0, -CO) and those in region 
B flow to (CO, -00, CO). 

3.2. The K = 0 plane 

In the K = 0 plane we find the Griffiths critical point K* = 0 exactly but, for both H1 
and H2, L* is somewhat greater than predicted. (See tables 4 and 5 . )  The differences 
between the predicted and actual values of L*/M* for H1 and H2 suggest a zeff of 
around 3.6 which, as expected, is lower than the z = 6 for a triangular lattice (as 
discussed in 8 2 ) .  

We now consider the eigenvalues of this point. For YT we obtain values of 1.0 and 
0.9 for H2 and H1 respectively which can be compared with the exact Ising value of 
1.000. Our spin-; fixed point has yT=O-79 and Berker and Wortis (1976) obtain 
0,9419 from their transformation, which is adjusted to the Griffiths symmetry. Our 
spin-; value is in agreement with the two-cell cluster calculation of Niemeijer and van 
Leeuwen (1976). They do not achieve a value near 1.0 until they consider a five-cell 
cluster. This suggests that one should not necessarily expect better than 20% accuracy 
for YT from a two-cluster approximation, and we return to this point below. There is 
also a fixed point at (0, CO, -00). 

3.3. The tricritical point 

In table 6 we compare our tricritical exponents with other calculations. Considering 
the approximations involved, the values in the table are not inconsistent with uni- 
versality of tricritical points at d = 2 ,  both with respect to the lattice structure and with 
respect to the type of tricriticality (metamagnet or BEG). 

Table 6. The tricritical exponents. 

Y 2  Y4 Y 6  

Our H1 3.1 0.6 -0.7 
Our H2 2.0 0.4 -1.1 
PSRGo" 1.92 0.7192 -0.6654 
PSRG; 1,8373 0.9181 -0.6875 
Metamagnetb 1.852 0,652 - 
Burkhardt' 1,7966 0.7966 - 
t expansiond 1.968 1.2 -2 

a Berker and Wortis (1976), Nienhuis and Nauenberg (1976), Burkhardt 
(1976), Stephen and McCauley (1973), Chang et al (1974), Tuthill et a1 
(1975), Wegner (1975). 

3.4. The Potts tricritical point 

As discussed in § 2 we also carried out a one-parameter renp-malisation group 
calculation for this model which gave us a very good check on the recursion relations 
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for H1. We find that points on the Potts line (K,3K,-2K) flow to (O,O,O) for 
K 0.447 and to (00, CO, -00) for K > 0.447. We note that for H1 and H3 we obtain 
the Potts fixed point exactly on the Potts axis. Our value for the eigenvalue yT agrees 
to two significant figures with the series value of Straley and Fisher (1975) (see table 
7)t. These results indicate that we have been successful in our aim (0 2) to preserve 
the Potts model symmetries. For H3  our fixed point is close to the Potts axis. 

Table 7. The Potts exponents. 

Y 2  Y4 Y6 

Our H1 
Our H2 
Our H3 

PSRG,‘ 
D asgupt ab 
Burkhardt‘ 
Seriesd 

PSRGoa 

3.3 
2.1 

1.9416 
1.8704 
1.8715 
1.87 

1.0 
1.0 
1 .o 
0.8327 
1.1063 
1.1806 
1.202 
1 .o 

0.5 
0.6 

0.4645 
0,5248 
0.4570 
0.4620 

a Berker and Wortis (1976), Dasgupta (1976), Burkhardt er a1 (1976), 
Straley and Fisher (1975). 

3.5. The first-order fixed points 

These have been listed above in their various regions of phase space. They cor- 
respond to those of Berker and Wortis (1976), except that we do not distinguish 
between the two different portions of their ‘F~ToPL’ plane. 

4. Conclusion 

Overall, our calculation can be said to have been successful. We have studied two 
slightly different Hamiltonians, each with two different cell assignments in the renor- 
malisation group transformation and carried out a one-parameter transformation on 
the Potts model. 

We find the same qualitative phase diagram for all these combinations. The main 
features included the Potts symmetry line and fixed point, the tricritical fixed point 
and the Griffiths-Ising spin-) fixed point and we also found fixed points at T = 0 and 
T = 00. It was also noticed that the spin-1 models flowed to the spin-) fixed point thus 
demonstrating the universality of Ising critical behaviour. It also appears that within 
the limits of our calculation tricritical behaviour is universal at d = 2. 

We note that none of our transformations contain any adjustable parameters that 
would enable us to artificially improve our results. The two averaging schemes give 
almost identical results everywhere, however the two different Hamiltonians do not. 
We note that Berker and Wortis (1976) only considered a Hamiltonian analogous to 
our H2 and could not exactly retain all the Potts symmetries. This was also the case 
with our H2. We were able to retain these symmetries exactly with H 1  and H3 and 

t Note however that other series calculations yield y ~ =  1.2 (Kim and Joseph 1975). 
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obtain very good Potts eigenvalue results for all our Hamiltonians. Thus it appears 
that problems with the Potts fixed point are solved by using H1. However, H1 does 
not give very good results for the y 2  exponents of the Griffiths-Ising spin-; and 
tricritical fixed points. 

The locations of the various fixed points also are different for the two Hamil- 
tonians but we have no independent comparison available for the triangular lattice. 

We do not feel that the solution to these problems lies in adding adjustable 
parameters to obtain numerical values since as noted in 0 3 above, we are generalising 
a two-cell cluster approximation, that only gives a 20% accuracy for an important 
eigenvalue. It would seem that the best way to improve the numerical results would 
be to carry out a calculation with larger clusters; thus increasing the effective coor- 
dination number. 

We predict that as the effective coordination number approaches z = 6 we would 
obtain better agreement between results from H1 and H2. We would also hope that 
these results would be even closer to the exact values for all the fixed points. 
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